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A Simple Treatment of “Snowplow”
Models of Explosions

1. INTRODUCTION

There are, aside from detailed numerical solutions, several approximate ways of treating the
evolution of an explosion in an ambient medium, The appropriate approximation for a given case
depends on the nature both of the explosion itself, and on the ambient :onditions prior to the
explosive cnergy release. If the explosion occurs in a dense medium, the whole process can be
described by continuum mechanics, and a shock will move outward into the initially stagnant
ambient medium. Here, “dense” means that the radius of the spherical she.ck front is very large
compared to the ambient mean free path. If the shock is also very strong, the pressure outside the
shock front may be neglecied in comparison with that inside; this reduces the number of initial
parameters entering the problem, and permits solutions of a special type, involving ordinary, rather
than partial differential equations. Such solutions have been studied in some detail.1»2 In the
opposite limit, namely an explosion moving into a vacuum, there can be no exterior shock. This
problem has been studied using continuum theory for an initially dense interior gas3 and also for

(Recelived for publication 4 October 1989)

1. Taylor, G.I. (1946) The Air wave surrounding an expanding sphere, Proc. Roy. Soc. (London)
Al186:273.

2. Sedov, L. 1. (1959) Similarity and Dimensional Methods in Mechanics, Academic Press, NY.

3. Keller, J. B. (1957) Spherical, cylindrical and one-dimensional gas flows, Q. J. App. Main.
14:171.




initially tenuous gases having a Maxwellian distribution, using a free molecular flow treatment.4
These two approaches, interestingly, give quite similar results.

It is for cases in between these two extremes, when the ambient density is neither zero, nor dense
enough to allow the use of continuum theory that the models called “snowplows” apply. Betweei. 1964
and 1969 several articles 5-6.7 dealing with explosions occurring in a rarefied atmosphere appea. 4 in
the literature. The application of these articles was primarily to high altitude chemical releases and
all three utilized a more or less detailed hydrodynamical treatment of the expanding gas produced by
the explosion. This involves, in general, the solution of a set of non-linear, partial differential
equations. Here, contrariwise, the internal details of the expansion are completely ignored and only
the overall conservation of momentum is considered. It is the purpose of this note to illustrate how a
simple application of basic principles can, on occasion, be used to obtain results as accurate as
extended, much rore complicated calculations,

2. PRESSURE FREE EXPANSION

Two of the last three articles cited refer to a “simple snowplow” model. In this model, it is
assumed “that the sphere’s radius expands so as to conserve kinetic energy, T". Now, the expanding
gas that results from the explosion is considered to be a “spherical piston”, which as it expands,
sweeps up ambient gas in its motion. But sweeping up gas, that is, accretion, is clearly an inelastic
process and it cannot be correct to assume that kinetic energy is conserved. What is, to a first
approximation, conserved Is outward momentun:; and the conservation of momentum may, if we
assume the gas to expand in a uniform shell, be written down immediately as

MV, =MV=(M,+4/3xR3)V
= (M, + 4/3  R3p) —gt—R (1)

Here, t is the time, M, is the mass of the released gas, V, the initial outward velocity of the sheil, M and
V the corresponding quantities at later times; R = R(t) the expansion radius: and p the density of the
ambient gas. Introducing a non-dimensional variable ¢ given by

M, \1/3
R=(Z1;;;) o (2)

and letting T, = E, be the initial kinetic and total energy respectively, assumed equal at t = 0!, we have

4. Moimud, P. (1960) Expansion of a rarefied gas cloud into a vacuum, Phys. Fluids 3:362.

5. Stuart, G.W. (1965) Explosions in rarefied atmospheres, Phys. Fluids 8:603.

6. Holway, _.H., Jr. (1969) Similarity model of an explosfon in a rarefied atmosphere, Phys. Fluids
12:2506.

7. Klein, M.M. (1968} Sirnilarity solution for cylindrical gas cloud in rarefied atmosphere, Phys.
Fluids 11:964,




M2V, 2 M2V, 2

T=1/2MV2=1/2M—°ﬁ-2°—=1/2——-M———- (3)
M, M, S |
T/To =y " Mo+ 4/3nR3p 1+ ¢3/3 @

In Figure 1, we plot this last, superimposed on Figure 3 of Holway, and see immediately that this
simple procedure gives results intermediate between those of Stuart and the later results of Holway.

If, instead of a shell expansion, we assume a similarity solution, v{r) = r/RV(R) where r and v are
the radius and corresponding velocity at points interior to the expansion surface, the momentum is
given by 3/4 MV; and the kinetic energy by 3/5 MV2, Egs. { 1) and (4) remain valid, however, as does the
subsequent integration. It is assumed in this case that the interior density is uniformly distributed.

A natural non-dimensionalization of the time leads to

1 Mo MoS /e
t=9; (4,,p) = (1281:2 p2 Eo3) S 5)

The last form is identical with Holway's if 128 = 423{y~ 1)3 or y = 5/3. Equation (1) in non-
dimensional variables is

(1+o33 =1 (6)

or, integrating, with ¢(0) = 0,
s=¢ +¢4/12 (7)

In Figure 2, Eq. (7) is superimposed on Holway's Figure 1 and again gives results intermediate
between the “simple snowplow” and the Stuart solution on the one hand, and the more recent solution
of Holway on the other.

3. EXTERNAL FRESSURE

Althoagh all three of the referenced articles carry their solutions up to and well beyond values of
¢ = 1, none of them includes the effects of an ext¢ rnal pressure. Insofar as these models are applicable
to chemical releases, it is clear however that for such radii external press.re effects must play a role in
the expansion; and in fact, that for expansion much beyond ¢ = 1, they will rapidly come to dominate
the process. This will occur because the internal momentum s fixed, while the external pressure
exerts a force which is proportional to the expanding surface area.

To take account of the pressure in the simplest way, we replace Eq. (1) by

d dR
stl0no+ 43w 30 G2 ] = -an r2 ®)

where P, is the ambient pressure. Now ordinarily p, = 2/ 3p. (cis the ambient thermal velocity.)
Here, however, material is not reflected, but accretes; hence we set p,=¢ 2 /6p to obtain
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2 2
(Mo + 4/3 1 R3p) Jrr + 4nR2p(%It3) = -4nR2p 52/6 ©)

Non-dimensionalizing, as before

a2 d¢) 2 c?
(1+0%3) St 02() *= -0255 5 (10)
Letting a = sonic velocity of the ambient gas, a2= gc': 2 50 that
d? do) 2
(1+¢3/3) a—s%+ ¢2( -d—g—) =-¢2/2yM2 (11)

where M, the initial (“hybrid”) Mach number will not be confused with total mass. A first integral of
Eq. (11} is

le) 2_ C 1
(ds T 1+ $3/3)2 7 2yM2 (12)
= do_1 dRy 14—
Whent=0,¢=0,and 3=V, dt o= 1 sothatC—1+2yM2 and
gg) 21 2yM2 + 1
(§2)°- TYM? [(1 + $3/3)2 ’1] (13)

An absolute upper limit on ¢ is now given by (1 + ¢3/3)2<2YM2 + lor¢® (2 +¢3/3)<6yM2. If y=5/3
and M = 10 (typical values), then ¢ < 2.5; a value smaller than some of those plotted by Stuart and
Holway. Because of the ¢© term, this result is rather insensitive to the value of M.

Taking the root of Eq. (13) and separating,

V2yM(1 + $3/3) do
2yYyM2 + 1 - (1 + $3/3)2]1/2

= ds (14)

The left hand side of Eq. (14) leads to an elliptic integral and cannot be integrated in elementary terms.

It is most conveniently handled by a numerical integration, and in Figure 3, taking y = 5/3, we show
the results of the integration for several values of the initial Mach number, M. Since M = is
equivalent to the pressure free case, the inclusion of the external pressure brings the values of ¢ closer
to those obtained by Holway; although it must be noted that the validity of snowplow solutions for
values of ¢ > 1 is questionable.

In spite of the extreme simplicity of these considerations, the results obtained, both with and
without external pressure, compare favorably with those of the earlier, more detailed calculations.
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